·
Engenharia Civil ·
Análise Estrutural
Envie sua pergunta para a IA e receba a resposta na hora

Prefere sua atividade resolvida por um tutor especialista?
- Receba resolvida até o seu prazo
- Converse com o tutor pelo chat
- Garantia de 7 dias contra erros
Recomendado para você
2
Pórtico Inclinado Rotulado
Análise Estrutural
UMG
11
Método das Forças
Análise Estrutural
UMG
13
Guia de Ejercicios Practicos - 2 Parte desplazamientos En Estructuras de Alma Llena
Análise Estrutural
UMG
11
Concreto Armado Eu Te Amo para Arquitetos 01
Análise Estrutural
UMG
4
Analise dos Solos
Análise Estrutural
UMG
9
Exemplo Resolvido Soriano 2 4 Metodo das Forças
Análise Estrutural
UMG
4
Viga Gerber com Cinco Apoios
Análise Estrutural
UMG
7
Teoria das Estrutuas 1
Análise Estrutural
UMG
2
Questões Resolvidas - Reações de Apoio
Análise Estrutural
UMG
7
Exemplo Resolvido Soriano 2 1 Metodo das Forças
Análise Estrutural
UMG
Texto de pré-visualização
Appendix B\nDisplacements of prismatic members\nThe following table gives the displacements in beams of constant flexural rigidity EI and constant torsional rigidity GJ, subjected to the loading shown on each beam. The positive directions of the displacements are downward for translation, clockwise for rotation. The deformations due to shearing forces are neglected.\n\nq per unit length\n\nf1 = 5q l 4 / 384 EI (B.1)\nf2 = f3 = 19q l 4 / 2048 EI (B.2)\nf4 = -f5 = q l 3 / 24 EI (B.3)\nf6 = -qx / 24 EI( l 3 - 2l 2 x + x 3 ) (B.4)\n\nf1 = P(l - b)x / 6 EI (2l - b 2 - x 2 ) when x << b (B.5)\nf1 = Pb(l - x) / 6 EI (2l x - x 2 - b 2 ) when x >> b (B.6)\nf2 = Pb(l - b) / 6 EI (2l - b 2 ) (B.7)\nf3 = -Pb / 6 EI (l 2 - b 2 ) (B.8)\n\nWhen b = l/2, f2 = f3 = P l / (16 EI), and f1 = P l 3 / 48 EI at x = l / 2 (B.8) Appendix B 753\n\nf1 = MI / 3 EI (B.9)\nf2 = MI / 6 EI (B.10)\nf3 = 15M 2 / 384 EI (B.11)\nf4 = M 2 / 16 EI (B.12)\nf5 = 21M 2 / 384 EI (B.13)\n\nf1 = MI / 4 EI (B.14)\nf2 = -9M 2 / 256 EI (B.15)\nf3 = -32 MI / EI (B.16)\nf4 = -3M 2 / 256 EI (B.17)\n\nf1 = TI / GJ (B.18)\n(Effect of warping ignored)\nf1 = P l 3 / 3 EI (B.19)\nf2 = P l 2 / 2 EI (B.20)\nf4 = f1 + df2 (B.21)\nf3 = P l 3 / 3 EI (1 - 3b / 2 l 2 + b 3 / 2 β) (B.22) for 0 ≤ b ≤ l\n\nf1 = q l 4 / 192 EI (B.23)\nf2 = -q l 3 / 48 EI (B.24) 754 Appendix B\n\nf1 = 7P l 3 / 768 EI (B.25)\nf2 = P l 2 / 32 EI (B.26)\n\nq per unit length\n\nf1 = q l 4 / 8 EI (B.27)\nf2 = q l 3 / 6 EI (3ξ 3 - 3ξ 2 + ξ 3 ) (B.28)\nf3 = q l 4 / 24 EI (θ 2 - 4θ 3 + θ 4 ) (B.29)\n\nf1 = M l 2 / EI β(1 - 0.5β) (B.30)\nf2 = [M/EI / (EI) with ξ ≤ β\nM / EI / (EI) with β ≤ ξ ≤ 1 (B.31)\nf3 = M(β) 2 / (EI) with ξ ≤ β (B.32) with β ≤ ξ ≤ 1\n\nf1 = q l 2 / 24 EI β 2 ξ(2 - β 2 - 2ξ 2 ) (B.33)\nf2 = q l 4 / 384 EI β 3 (32 - 39β + 12β 2 ) (B.34)\nf3 = q l 3 / 24 EI β 2 (2 - β 2 ) (B.35)\nf4 = -q l 3 / 24 EI β 2 (4 - 4β + β 2 ) (B.36) Appendix B 755\n\nM\n\nf1 = -f2 = -M I / 2 E I (B.37)\n\nf3 = -M x(l - x) / 2 E I (B.38)\n\nf4 = -M I^2 / 8 E I (B.39)\n\nf1 = \u03c8 / 8 (B.39)\n\nf2 = \u03c8 x(l - x) / 2 (B.40)\n\nf3 = -f4 = \u03c8 l / 2 (B.41)\n\nBeam depth\n\n\u03c8 = curvature\n\nThermal expansion (strain)
Envie sua pergunta para a IA e receba a resposta na hora
Recomendado para você
2
Pórtico Inclinado Rotulado
Análise Estrutural
UMG
11
Método das Forças
Análise Estrutural
UMG
13
Guia de Ejercicios Practicos - 2 Parte desplazamientos En Estructuras de Alma Llena
Análise Estrutural
UMG
11
Concreto Armado Eu Te Amo para Arquitetos 01
Análise Estrutural
UMG
4
Analise dos Solos
Análise Estrutural
UMG
9
Exemplo Resolvido Soriano 2 4 Metodo das Forças
Análise Estrutural
UMG
4
Viga Gerber com Cinco Apoios
Análise Estrutural
UMG
7
Teoria das Estrutuas 1
Análise Estrutural
UMG
2
Questões Resolvidas - Reações de Apoio
Análise Estrutural
UMG
7
Exemplo Resolvido Soriano 2 1 Metodo das Forças
Análise Estrutural
UMG
Texto de pré-visualização
Appendix B\nDisplacements of prismatic members\nThe following table gives the displacements in beams of constant flexural rigidity EI and constant torsional rigidity GJ, subjected to the loading shown on each beam. The positive directions of the displacements are downward for translation, clockwise for rotation. The deformations due to shearing forces are neglected.\n\nq per unit length\n\nf1 = 5q l 4 / 384 EI (B.1)\nf2 = f3 = 19q l 4 / 2048 EI (B.2)\nf4 = -f5 = q l 3 / 24 EI (B.3)\nf6 = -qx / 24 EI( l 3 - 2l 2 x + x 3 ) (B.4)\n\nf1 = P(l - b)x / 6 EI (2l - b 2 - x 2 ) when x << b (B.5)\nf1 = Pb(l - x) / 6 EI (2l x - x 2 - b 2 ) when x >> b (B.6)\nf2 = Pb(l - b) / 6 EI (2l - b 2 ) (B.7)\nf3 = -Pb / 6 EI (l 2 - b 2 ) (B.8)\n\nWhen b = l/2, f2 = f3 = P l / (16 EI), and f1 = P l 3 / 48 EI at x = l / 2 (B.8) Appendix B 753\n\nf1 = MI / 3 EI (B.9)\nf2 = MI / 6 EI (B.10)\nf3 = 15M 2 / 384 EI (B.11)\nf4 = M 2 / 16 EI (B.12)\nf5 = 21M 2 / 384 EI (B.13)\n\nf1 = MI / 4 EI (B.14)\nf2 = -9M 2 / 256 EI (B.15)\nf3 = -32 MI / EI (B.16)\nf4 = -3M 2 / 256 EI (B.17)\n\nf1 = TI / GJ (B.18)\n(Effect of warping ignored)\nf1 = P l 3 / 3 EI (B.19)\nf2 = P l 2 / 2 EI (B.20)\nf4 = f1 + df2 (B.21)\nf3 = P l 3 / 3 EI (1 - 3b / 2 l 2 + b 3 / 2 β) (B.22) for 0 ≤ b ≤ l\n\nf1 = q l 4 / 192 EI (B.23)\nf2 = -q l 3 / 48 EI (B.24) 754 Appendix B\n\nf1 = 7P l 3 / 768 EI (B.25)\nf2 = P l 2 / 32 EI (B.26)\n\nq per unit length\n\nf1 = q l 4 / 8 EI (B.27)\nf2 = q l 3 / 6 EI (3ξ 3 - 3ξ 2 + ξ 3 ) (B.28)\nf3 = q l 4 / 24 EI (θ 2 - 4θ 3 + θ 4 ) (B.29)\n\nf1 = M l 2 / EI β(1 - 0.5β) (B.30)\nf2 = [M/EI / (EI) with ξ ≤ β\nM / EI / (EI) with β ≤ ξ ≤ 1 (B.31)\nf3 = M(β) 2 / (EI) with ξ ≤ β (B.32) with β ≤ ξ ≤ 1\n\nf1 = q l 2 / 24 EI β 2 ξ(2 - β 2 - 2ξ 2 ) (B.33)\nf2 = q l 4 / 384 EI β 3 (32 - 39β + 12β 2 ) (B.34)\nf3 = q l 3 / 24 EI β 2 (2 - β 2 ) (B.35)\nf4 = -q l 3 / 24 EI β 2 (4 - 4β + β 2 ) (B.36) Appendix B 755\n\nM\n\nf1 = -f2 = -M I / 2 E I (B.37)\n\nf3 = -M x(l - x) / 2 E I (B.38)\n\nf4 = -M I^2 / 8 E I (B.39)\n\nf1 = \u03c8 / 8 (B.39)\n\nf2 = \u03c8 x(l - x) / 2 (B.40)\n\nf3 = -f4 = \u03c8 l / 2 (B.41)\n\nBeam depth\n\n\u03c8 = curvature\n\nThermal expansion (strain)